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EXECUTIVE SUMMARY 

The Federal Aviation Administration (FAA) provides standards for the thickness design of hot mix 
asphalt (HMA) overlays on rigid airport pavements. The current FAA design procedure does not 
explicitly consider the important reflection cracking distress mode. Reflection cracks commonly 
result from temperature-induced cyclic contraction (opening) and expansion (closing) in the 
concrete slab but may also have a traffic-induced component. This report describes an FAA study 
that models crack propagation for the case of traffic-induced cyclic joint opening (Mode II 
fracture), whereas temperature-induced joint opening was studied earlier in its companion report, 
DOT/FAA/TC-20/17. 
 
The companion report used the developed model to determine Mode I Paris Law parameters using 
experimental data from the National Airport Pavement Test Facility (NAPTF). A similar exercise 
was not possible for the Mode II formulation, because (1) the rig does not accept wheeled traffic, 
and (2) in any case, traffic loads do not produce pure Mode II loading (it is combined Mode I/Mode 
II). However, it is expected that the analysis presented here will be applied to mixed-mode 
reflection crack prediction. 
 
The elements of this study are mechanical formulation of the problem, definition of the material 
parameters for model implementation, modification of the crack propagation law (Paris’ Law) for 
viscoelastic materials, the representation of the asphalt viscoelastic response by Prony series, and 
the assumption of displacement controlled cyclic loading. The assumption of displacement control 
makes the problem separable into an elastic part and a time-dependent part. 
 
The viscoelastic asphalt material was represented in the model by its Prony series. The method to 
compute Prony terms is described in earlier report DOT/FAA/TC-20/17 for Mode I crack 
propagation case and is common for Mode II, too.  
 
Computing the energy release rate (ERR) in the modified crack propagation law requires 
information about viscoelastic tensile strains and forces. Because the tests are displacement-
controlled, it was possible to separate time variables (e.g., normalized load history) from spatial 
variables (e.g., elastic strains). This immediately allows the original ERR to be decoupled into an 
elastic part and a time-domain part. The elastic solution proceeds by superposing of the linear 
elastic solutions of two separate problems with prescribed boundary displacements—one based on 
the intact overlay and the other on the cracked domain. The analytical solution presented gives 
values of Mode II stress intensity factors that are in agreement with those from a well-accepted 
Finite Element Methods program. 
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1.  INTRODUCTION 

This report describes the two-dimensional (2D) analytical modeling of a structure consisting of 
two jointed concrete slabs and an asphalt concrete (AC) overlay, which is subjected to traffic-
induced mechanical loading. This type of load typically causes in-plane shear cracking (Mode II) 
within the overlay material.  
 
An analytical model has advantages over an equivalent numerical model for both qualitative and 
quantitative analyses. Using the finite element method (FEM), a simple parametric sensitivity 
analysis involving three input parameters, and taking just 10 input values for each parameter, 
requires running 103 = 1000 cases, each of which is time-consuming. To accelerate computation 
(at the expense of numerical accuracy), many authors have adopted a very coarse finite element 
mesh. For example, the finite element analysis package, CrackPro, uses only five points around 
the crack tip (Hu et al., 2008). By contrast, the analytical model discussed in this report achieves 
both computational efficiency and accuracy. The model can be used to compute the stress intensity 
factor (SIF) or energy release rate (ERR) in an asphalt overlay subject to Mode II cracking caused 
by aircraft traffic loads. 
 
Consider the overlay of dimensionless length 2L and thickness h with a preexisting vertical crack 
of length 𝑎𝑎 < h and constant Poisson’s ratio 𝜈𝜈 = 0.35, under assumptions of plane strain in two 
dimensions (length and thickness), and uniform crack propagation across the third dimension 
(width) of the overlay. The coordinate system has its origin O located just above the joint at the 
bottom surface of the overlay (Figure 1). The vertical axis (x axis) aligns with the crack, and the 
horizontal axis (y axis) coincides with the bottom surface of the overlay. 
 
As discussed in a companion report about Mode I cracking (Tuleubekov, 2020), displacement-
controlled boundary conditions dictate that when there is separation of time and spatial variables 
in displacement fields 𝑢𝑢𝑖𝑖: 
 

𝑢𝑢𝑖𝑖(𝑡𝑡;  𝑥𝑥, 𝑦𝑦) =  𝑢𝑢𝑖𝑖𝑒𝑒(𝑥𝑥, 𝑦𝑦)𝛬𝛬(𝑡𝑡)                                                 (1) 
 
where  𝑖𝑖 = 1,2;  and 0 ≤ 𝛬𝛬(𝑡𝑡) ≤ 1 is the normalized amplitude of applied boundary displacement, 
and the superscript e refers to “elastic.” Going forward, 𝑢𝑢𝑖𝑖𝑒𝑒(𝑥𝑥,𝑦𝑦) is the displacement at location 
(𝑥𝑥,𝑦𝑦) when the maximum displacement 𝑢𝑢0 is applied to the bottom of the overlay. Strains 𝜀𝜀𝑖𝑖𝑖𝑖 are 
similarly separable: 
 

𝜀𝜀𝑖𝑖𝑖𝑖(𝑡𝑡;  𝑥𝑥,𝑦𝑦) =  𝜀𝜀𝑖𝑖𝑖𝑖𝑒𝑒 (𝑥𝑥,𝑦𝑦)𝛬𝛬(𝑡𝑡)                                                 (2) 
 
Computationally, the most challenging part of this work is solving the elastic static problem 
formulated for the elastic (time-independent) variables 𝑢𝑢𝑖𝑖𝑒𝑒 ,  𝜀𝜀𝑖𝑖𝑖𝑖𝑒𝑒  in equations (1) and (2). A 
solution to this problem that makes use of complex analysis is presented in appendix B of this 
report. To reduce the number of independent variables under consideration, the original physical 
problem is reformulated into a dimensionless form (Figure 1), normalizing length quantities by the 
overlay thickness h and stress quantities by the instantaneous Young’s modulus 𝐸𝐸0 of asphalt 
material. Henceforth, all variables are given in dimensionless terms.  
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Figure 1. Original (top) and Dimensionless (bottom) Formulation of the Problem 

2.  DECOMPOSITION OF ELASTIC PROBLEM 

The elastic problem is approached by superposition of solutions of the two problems illustrated in 
Figure 2. The first problem considers the uncracked domain with the same prescribed vertical 
displacements at the bottom as the original problem. The second problem considers the cracked 
domain; however, vertical displacements at the bottom boundary are zero. The sum of the solutions 
of these two problems (Figure 2) in the linear elastic domain will give the desired Mode II solution. 
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Figure 2. Decomposition of the Original Problem (top) into Subproblems Defined on Intact 
(middle) and Cracked (bottom) Domains 

 
3.  ASPHALT MATERIAL 

The viscoelastic material is defined by a Prony series expansion of the relaxation modulus:  
 

𝐸𝐸(𝑡𝑡)
𝐸𝐸0

= 1 −�
𝐸𝐸𝑖𝑖
𝐸𝐸0
�1 − 𝑒𝑒

−𝑡𝑡
𝜏𝜏𝑖𝑖 �

∞

𝑖𝑖=1

                                                        (3) 

 
where 𝐸𝐸0 = 𝐸𝐸(0) is the instantaneous modulus. With long-term modulus 𝐸𝐸∞ = 𝐸𝐸(∞), it is useful 
to note that:  
 

�𝐸𝐸𝑖𝑖

∞

𝑖𝑖=1

= 𝐸𝐸0 − 𝐸𝐸∞                                                                      

 
Equation (3) can be rewritten: 
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𝐸𝐸(𝑡𝑡) = 𝐸𝐸∞ + �𝐸𝐸𝑖𝑖𝑒𝑒
−𝑡𝑡
𝜏𝜏𝑖𝑖

∞

𝑖𝑖=1

                                                  (4) 

 
4.  FAILURE LAW 

In this section, Schapery’s theory of crack damage in viscoelastic material is discussed. As 
described in Gu et al. (2015), within that theory’s framework, Paris’ law has a modified form: 
 

𝑑𝑑𝑎𝑎
𝑑𝑑𝑑𝑑

= 𝐾𝐾 �
𝜕𝜕𝑊𝑊𝑅𝑅

𝑐𝑐

𝜕𝜕𝜕𝜕
�
𝜇𝜇

                                                              (5) 

 
where  𝑎𝑎 is the current crack length, 𝑑𝑑 is the current number of fatigue life cycles, 𝜕𝜕𝜕𝜕 is the area 
element of a newly created crack surface, and 𝜕𝜕𝑊𝑊𝑅𝑅

𝑐𝑐

𝜕𝜕𝜕𝜕
 is the ERR per loading cycle of cumulative 

pseudo work 𝑊𝑊𝑅𝑅. That is, the cumulative sum of pseudo-work is: 
 

𝑊𝑊𝑅𝑅
𝑐𝑐(𝑑𝑑) = �𝑊𝑊𝑅𝑅(𝑘𝑘)                                                        (6)

𝑛𝑛

𝑘𝑘=1

 

 

where 𝑊𝑊𝑅𝑅(𝑘𝑘) is the pseudo-work spent in the k-th load cycle [𝑡𝑡𝑏𝑏𝑒𝑒𝑏𝑏𝑖𝑖𝑛𝑛, 𝑡𝑡𝑒𝑒𝑛𝑛𝑒𝑒] to further increment the 
crack. Fracture parameters 𝐾𝐾 and 𝜇𝜇 are material parameters. The determination of 𝐾𝐾 and 𝜇𝜇 from 
full-scale test data is the goal of the current research.  
 
To operate with equation (5) freely, a good approximation 𝑎𝑎(𝑑𝑑) of measured crack length is needed 
at each point. In describing Mode I cracking, Tuleubekov (2020) used data from a full-scale testing 
rig at the Federal Aviation Administration (FAA) National Airport Pavement Test Facility (FAA, 
n.d.) that simulated reflective cracks due to temperature cycling only (pure Mode I). In the present 
case (Mode II), similar test measurements of crack length (and therefore crack propagation rate) 
caused purely by shear loading are lacking. Indeed, under traffic loading conditions, each wheel 
passage results in not just Mode II loading, but a mixture of Mode II with both Mode I and Mode 
III, and which mode is dominant depends on the wheel position with respect to the joint. For now, 
we will derive a general solution applicable to any particular set of crack propagation 𝑎𝑎(𝑑𝑑) data. 
 
Let 𝑁𝑁 denote the total number of cycles to fully separate the overlay (complete the crack). To fit 
the number of cumulative cycles n from the test data to corresponding crack lengths a, one may 
use a fifth-degree polynomial and its derivative: 
 

𝑎𝑎(𝑑𝑑) = �𝑎𝑎𝑘𝑘 �
𝑑𝑑
𝑁𝑁
− 1�

𝑘𝑘5

𝑘𝑘=1

                                       (7) 

𝑑𝑑𝑎𝑎
𝑑𝑑𝑑𝑑

=
1
𝑁𝑁
�𝑘𝑘𝑎𝑎𝑘𝑘 �

𝑑𝑑
𝑁𝑁
− 1�

𝑘𝑘−15

𝑘𝑘=1

                                 (8) 
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where 𝑎𝑎𝑘𝑘 are fitting coefficients. 
 
As stated in the introduction, assume that the crack grows uniformly along the whole width b of 
the overlay. Under this assumption, the differential increment 𝜕𝜕𝜕𝜕 of the crack surface area is:  
 

𝜕𝜕𝜕𝜕 = 2𝑏𝑏 𝜕𝜕𝑎𝑎                                                              (9) 
 
where 𝜕𝜕𝑎𝑎 = 𝑑𝑑𝑎𝑎 is the differential increment of crack length. Having equations (8) and (9), and 
using the differentiation rule:   
 

𝜕𝜕𝑊𝑊𝑅𝑅
𝑐𝑐

𝜕𝜕𝜕𝜕
=

1
2𝑏𝑏

𝜕𝜕𝑊𝑊𝑅𝑅
𝑐𝑐

𝜕𝜕𝑎𝑎
=

1
2𝑏𝑏

𝜕𝜕𝑊𝑊𝑅𝑅
𝑐𝑐

𝜕𝜕𝑑𝑑
𝜕𝜕𝑎𝑎
𝜕𝜕𝑑𝑑

�                                                      (10) 
 
we need only to find pseudo work 𝑊𝑊𝑅𝑅

𝑐𝑐 at each cycle n to insert it into equation (10) and then to the 
failure law, equation (5). The next section examines the derivation of cumulative pseudo work. 
 

5.  PSEUDO WORK 

For the shear loading problem, the load 𝑃𝑃𝑉𝑉𝑉𝑉(𝑡𝑡) described in Walubita et al. (2013) is adapted as 
follows. Introduce the load 𝑃𝑃𝑉𝑉𝑉𝑉(𝑡𝑡) on load-displacement curves as the measured (viscoelastic) 
force for a specimen with thickness h and width b: 
 

𝑃𝑃𝑉𝑉𝑉𝑉(𝑡𝑡) = � 𝜎𝜎𝑥𝑥𝑥𝑥(𝑡𝑡;  𝑥𝑥, 0, 𝑧𝑧) 𝑑𝑑𝑥𝑥 𝑑𝑑𝑧𝑧 
𝜕𝜕

                                        (11) 

 
where A is the intact area (cross-section 𝑥𝑥 > 𝑎𝑎,𝑦𝑦 = 0 above the crack tip, Figure 1), and 
𝜎𝜎𝑥𝑥𝑥𝑥(𝑡𝑡;  𝑥𝑥, 0, 𝑧𝑧) is the shear stress acting on the cross-sectional plane 𝑦𝑦 = 0. For a crack of length 
a, we find that the intact area = {(𝑥𝑥, 𝑧𝑧):𝑎𝑎 < 𝑥𝑥 < ℎ, 0 < 𝑧𝑧 < 𝑏𝑏} , so: 
 

𝑃𝑃𝑉𝑉𝑉𝑉(𝑡𝑡) = � � 𝜎𝜎𝑥𝑥𝑥𝑥(𝑡𝑡;  𝑥𝑥, 0, 𝑧𝑧)
ℎ

𝑎𝑎(𝑛𝑛(𝑡𝑡))

𝑏𝑏

0

𝑑𝑑𝑥𝑥 𝑑𝑑𝑧𝑧                                         (12) 

 
Recall that crack length indirectly depends on time. That dependence is implicit and is expressed 
via the number of cycles completed before the moment t. In the plane strain problem, the tensile 
stress 𝜎𝜎𝑥𝑥𝑥𝑥(𝑡𝑡;  𝑥𝑥,𝑦𝑦, 𝑧𝑧) does not vary along width z, i.e.: 
 

𝑑𝑑 
𝑑𝑑𝑧𝑧

 𝜎𝜎𝑥𝑥𝑥𝑥(𝑡𝑡;  𝑥𝑥,𝑦𝑦, 𝑧𝑧) = 0  
 
Then the external integral in equation (12) reduces to simple multiplication by width 𝑏𝑏: 
 

𝑃𝑃𝑉𝑉𝑉𝑉(𝑡𝑡) = 𝑏𝑏 � 𝜎𝜎𝑥𝑥𝑥𝑥(𝑡𝑡;  𝑥𝑥, 0)
ℎ

𝑎𝑎(𝑛𝑛(𝑡𝑡))

𝑑𝑑𝑥𝑥                                                    (13) 
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where z is omitted henceforth. The viscoelastic stress is further calculated using the constitutive 
model for the uniaxial viscoelastic response, which is expressed as  
 

𝜎𝜎𝑥𝑥𝑥𝑥(𝑡𝑡;  𝑥𝑥, 0) =
1

1 + 𝜈𝜈
�  𝐸𝐸(𝑡𝑡 − 𝜏𝜏)
𝑡𝑡

0

𝑑𝑑𝜀𝜀𝑥𝑥𝑥𝑥(𝜏𝜏;  𝑥𝑥, 0)
𝑑𝑑𝜏𝜏

 𝑑𝑑𝜏𝜏                                    (14) 

 
where 𝜀𝜀𝑥𝑥𝑥𝑥(𝜏𝜏;  𝑥𝑥, 0) is shear strain at moment 𝜏𝜏 in location (x, 0).  
 
To find the strains in equation (14), differentiate with respect to time both sides of equation (2) 
when 𝜀𝜀𝑖𝑖𝑖𝑖 = 𝜀𝜀𝑥𝑥𝑥𝑥 and 𝑦𝑦 = 0: 
 

𝑑𝑑𝜀𝜀𝑥𝑥𝑥𝑥(𝜏𝜏;  𝑥𝑥, 0)
𝑑𝑑𝜏𝜏

= 𝜀𝜀𝑥𝑥𝑥𝑥𝑒𝑒 (𝑥𝑥, 0)
𝑑𝑑𝛬𝛬(𝜏𝜏)
𝑑𝑑𝜏𝜏

                                           (15) 
 
where 𝜀𝜀𝑥𝑥𝑥𝑥𝑒𝑒 (𝑥𝑥, 0) is elastic shear strain at moment 𝜏𝜏 in location (x, 0) above crack tip.  
 
Insert equation (15) into equation (14): 
 

𝜎𝜎𝑥𝑥𝑥𝑥(𝑡𝑡;  𝑥𝑥, 0) =
1

1 + 𝜈𝜈
𝜀𝜀𝑥𝑥𝑥𝑥𝑒𝑒 (𝑥𝑥, 0)�  𝐸𝐸(𝑡𝑡 − 𝜏𝜏)

𝑡𝑡

0

𝑑𝑑𝛬𝛬(𝜏𝜏)
𝑑𝑑𝜏𝜏

 𝑑𝑑𝜏𝜏                                    (16) 

 
Now examine the time history of loading integral in equation (16). Due to the high frequency 𝜔𝜔 
of traffic loading (in comparison with the relatively slow temperature cycling), the integral in 
equation (16) can be approximated as follows: 
 

�  𝐸𝐸(𝑡𝑡 − 𝜏𝜏)
𝑡𝑡

0

𝑑𝑑𝛬𝛬(𝜏𝜏)
𝑑𝑑𝜏𝜏

 𝑑𝑑𝜏𝜏 ≈ |𝐸𝐸∗|(𝜔𝜔)𝛬𝛬(𝑡𝑡)                                           (17) 

 
where |𝐸𝐸∗|(𝜔𝜔) is dynamic modulus of asphalt material determined at frequency 𝜔𝜔. Then equation 
(16) turns into: 
 

𝜎𝜎𝑥𝑥𝑥𝑥(𝑡𝑡;  𝑥𝑥, 0) =
|𝐸𝐸∗|

1 + 𝜈𝜈
𝜀𝜀𝑥𝑥𝑥𝑥𝑒𝑒 (𝑥𝑥, 0)𝛬𝛬(𝑡𝑡)                                      (18) 

 
Normalize equation (18) by use of instantaneous modulus 𝐸𝐸(0) and introduce dimensionless 𝐸𝐸�: 
 

𝜎𝜎𝑥𝑥𝑥𝑥(𝑡𝑡;  𝑥𝑥, 0)
𝐸𝐸(0)

=
|𝐸𝐸∗|
𝐸𝐸(0)

1
1 + 𝜈𝜈

𝜀𝜀𝑥𝑥𝑥𝑥𝑒𝑒 (𝑥𝑥, 0)𝛬𝛬(𝑡𝑡) =
𝐸𝐸�

1 + 𝜈𝜈
𝜀𝜀𝑥𝑥𝑥𝑥𝑒𝑒 (𝑥𝑥, 0)𝛬𝛬(𝑡𝑡) = 𝜎𝜎𝑥𝑥𝑥𝑥𝑒𝑒 (𝑥𝑥, 0)𝛬𝛬(𝑡𝑡)      (19) 

 
At this point, we could insert FEM-computed 𝜎𝜎𝑥𝑥𝑥𝑥(𝑡𝑡;  𝑥𝑥, 0) into equation (14) to get the stress value 
at each moment in time. To obtain the integral load 𝑃𝑃𝑉𝑉𝑉𝑉(𝑡𝑡) in equation (13), the whole array of 
such time-stress curves must be computed at each increment of depth and at each time step. This 



 

7 
 

process is computationally expensive. Instead, an elastic solution for 𝜎𝜎𝑥𝑥𝑥𝑥𝑒𝑒 (𝑥𝑥, 0) was derived and is 
presented in appendices A and B accompanying this report. 
 
6.  CONCLUSIONS 

This study derived the modified Paris’ law for Mode II fracture in viscoelastic material using the 
concept of pseudo-energy. The mechanistic response of the structure was derived analytically for 
the plane strain problem with prescribed vertical boundary displacements due to traffic-induced 
loading. There are three possible directions for further model development starting from the 
current stage of modelling. 
 

1. In addition to Mode II fracture, traffic loading induces a Mode I fracture when the center 
of the wheel load is located directly above the joint, bending both neighboring slabs 
symmetrically with respect to the joint surface. Such mixed mode loading needs a clear 
methodology of mode separation for further analysis.  
 

2. The Mode II cracking analysis could be expanded by introducing the third dimension. This 
would allow consideration of horizontal as well as vertical crack growth (i.e., “channeling” 
in the transverse direction). Analytically, this is a challenging problem because it is no 
longer a plane strain problem. Probably, it can be solved only numerically using a finite 
element method. 
 

3. Mode III (out-of-plane shear cracking) could be added to the consideration of fracture. This 
would allow analysis of fractures occurring outside of the wheel pathway due to screw 
dislocation at the joint. In Mode III, the model may be treated analytically in two 
dimensions as an anti-plane strain problem. 
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APPENDIX A—SOLUTION FOR ENTIRE DOMAIN 

For mathematical convenience, a small finite distance 𝛿𝛿 > 0 between slab edges (Figure A-1) is 
introduced. Besides its obvious physical meaning, this device solves a problem that otherwise 
would require application of supposed generalized functions (Demidov, 2001), i.e., the 
discontinuous displacement boundary condition in the vicinity of the joint. To solve this problem, 
we will use a continuous approximation of the discontinuous boundary (Figure A-2). 
 

 
 

Figure A-1. Undamaged Overlay Under Shear Loading 
 
In dimensionless variables, the boundary conditions are: 
 

𝑢𝑢𝑥𝑥|𝑥𝑥=0 = 0                                                                       (A. 1) 
 

 𝑢𝑢𝑥𝑥�𝑥𝑥=0 = 𝑢𝑢0  �
𝑥𝑥 𝛿𝛿⁄ , |𝑥𝑥| ≤ 𝛿𝛿

𝑠𝑠𝑖𝑖𝑠𝑠𝑑𝑑 (𝑥𝑥), 𝛿𝛿 ≤ |𝑥𝑥| ≤ 𝐿𝐿
0, |𝑥𝑥| > 𝐿𝐿

                     (A. 2) 

 
𝜎𝜎𝑥𝑥𝑥𝑥�𝑥𝑥=1 = 0                                                                       (A. 3) 

 
 𝜎𝜎𝑥𝑥𝑥𝑥�𝑥𝑥=1 = 0                                                                       (A. 4) 
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Figure A-2. Continuous Approximation of Boundary Vertical Displacement 
 
Equilibrium equations written in terms of displacements are: 
 

𝜕𝜕2𝑢𝑢𝑥𝑥
𝜕𝜕𝑥𝑥2

+
𝜕𝜕2𝑢𝑢𝑥𝑥
𝜕𝜕𝑦𝑦2

+
1

1 − 2𝜈𝜈
𝜕𝜕
𝜕𝜕𝑥𝑥

�
𝜕𝜕𝑢𝑢𝑥𝑥
𝜕𝜕𝑥𝑥

+  
𝜕𝜕𝑢𝑢𝑥𝑥
𝜕𝜕𝑦𝑦

� = 0                          (A. 5) 

 
𝜕𝜕2𝑢𝑢𝑥𝑥
𝜕𝜕𝑥𝑥2

+
𝜕𝜕2𝑢𝑢𝑥𝑥
𝜕𝜕𝑦𝑦2

+
1

1 − 2𝜈𝜈
𝜕𝜕
𝜕𝜕𝑦𝑦

�
𝜕𝜕𝑢𝑢𝑥𝑥
𝜕𝜕𝑥𝑥

+  
𝜕𝜕𝑢𝑢𝑥𝑥
𝜕𝜕𝑦𝑦

� = 0                          (A. 6) 

 
It can be shown that displacements are taken in the following form: 
 

𝑢𝑢𝑥𝑥 = (1 + 𝜈𝜈) �−
𝜕𝜕Φ0

𝜕𝜕𝑥𝑥
− 𝑦𝑦

𝜕𝜕Φ2

𝜕𝜕𝑥𝑥
�                                                   (A. 7) 

 

𝑢𝑢𝑥𝑥 = (1 + 𝜈𝜈) �𝜅𝜅Φ2 −
𝜕𝜕Φ0

𝜕𝜕𝑦𝑦
− 𝑦𝑦

𝜕𝜕Φ2

𝜕𝜕𝑦𝑦
�                                          (A. 8) 

 
where (𝜅𝜅 = 3 − 4𝜈𝜈 ) is a solution to the system of equations (A.5) and (A.6), provided that 
Φ0(𝑥𝑥, 𝑦𝑦),Φ2(𝑥𝑥, 𝑦𝑦) are harmonic potentials: 
 

𝜕𝜕2Φ0

𝜕𝜕𝑥𝑥2
+
𝜕𝜕2Φ0

𝜕𝜕𝑦𝑦2
= 0;          

𝜕𝜕2Φ2

𝜕𝜕𝑥𝑥2
+
𝜕𝜕2Φ2

𝜕𝜕𝑦𝑦2
= 0.                                   (A. 9) 
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Stresses in this case are: 

𝜎𝜎𝑥𝑥𝑥𝑥 = −
𝜕𝜕2Φ0

𝜕𝜕𝑥𝑥2
+ 2𝜈𝜈

𝜕𝜕Φ2

𝜕𝜕𝑦𝑦
− 𝑦𝑦

𝜕𝜕2Φ2

𝜕𝜕𝑥𝑥2
                                             (A. 10) 

 

𝜎𝜎𝑥𝑥𝑥𝑥 =
𝜕𝜕
𝜕𝜕𝑦𝑦

�2(1 − 𝜈𝜈)Φ2 −
𝜕𝜕Φ0

𝜕𝜕𝑦𝑦
� − 𝑦𝑦

𝜕𝜕2Φ2

𝜕𝜕𝑦𝑦2
                                      (A. 11) 

 

𝜎𝜎𝑥𝑥𝑥𝑥 =
𝜕𝜕
𝜕𝜕𝑥𝑥

�(1 − 2𝜈𝜈)Φ2 −
𝜕𝜕Φ0

𝜕𝜕𝑦𝑦
− 𝑦𝑦

𝜕𝜕Φ2

𝜕𝜕𝑦𝑦
�                                       (A. 12) 

 
Thus, to find Φ0,Φ2, we seek them in the form of Fourier integrals (Uflyand, 1968): 
 

Φ0(𝑥𝑥,𝑦𝑦) =
1

√2𝜋𝜋
�(𝜕𝜕0

∞

−∞

(𝜆𝜆) cosh 𝜆𝜆𝑦𝑦 + 𝐵𝐵0(𝜆𝜆) sinh 𝜆𝜆𝑦𝑦)𝑒𝑒−𝑖𝑖𝑖𝑖𝑥𝑥
𝑑𝑑𝜆𝜆
𝜆𝜆

                      (A. 13) 

 

Φ2(𝑥𝑥, 𝑦𝑦) =
1

√2𝜋𝜋
�(𝜕𝜕2

∞

−∞

(𝜆𝜆) cosh 𝜆𝜆𝑦𝑦 + 𝐵𝐵2 (𝜆𝜆)sinh𝜆𝜆𝑦𝑦)𝑒𝑒−𝑖𝑖𝑖𝑖𝑥𝑥𝑑𝑑𝜆𝜆                       (A. 14) 

 
Henceforth, 𝑓𝑓 will denote the Fourier transform of 𝑓𝑓 with respect to x: 
 

𝑓𝑓(𝜆𝜆) =
1

√2𝜋𝜋
� 𝑓𝑓
∞

−∞

(𝑥𝑥)𝑒𝑒𝑖𝑖𝑖𝑖𝑥𝑥𝑑𝑑𝑥𝑥 

 
Fourier transforms of each boundary condition are: 
 

𝑢𝑢𝑥𝑥�|𝑥𝑥=0 = 0                                                                     (A. 15) 
 

𝑢𝑢𝑥𝑥�𝑥𝑥=0
� =

1
√2𝜋𝜋

� 𝑢𝑢𝑥𝑥

∞

−∞

(𝑥𝑥)𝑒𝑒𝑖𝑖𝑖𝑖𝑥𝑥𝑑𝑑𝑥𝑥 = �2
𝜋𝜋

 
𝑖𝑖𝑢𝑢0
𝛿𝛿𝜆𝜆2

  (sin 𝛿𝛿𝜆𝜆 − 𝛿𝛿𝜆𝜆 cos 𝐿𝐿𝜆𝜆)                    (A. 16) 

 
𝜎𝜎𝑥𝑥𝑥𝑥� �

𝑥𝑥=1
= 0                                                                  (A. 17) 

 
 𝜎𝜎𝑥𝑥𝑥𝑥� �

𝑥𝑥=1
= 0                                                                  (A. 18) 

 
Fourier transforms of potentials (A.13) and (A.14) are: 
 

Φ0� (𝜆𝜆,𝑦𝑦) =
1
𝜆𝜆

(𝜕𝜕0(𝜆𝜆) cosh 𝜆𝜆𝑦𝑦 + 𝐵𝐵0(𝜆𝜆) sinh 𝜆𝜆𝑦𝑦)                              (A. 19) 
 

Φ2� (𝜆𝜆,𝑦𝑦) = 𝜕𝜕2(𝜆𝜆) cosh 𝜆𝜆𝑦𝑦 + 𝐵𝐵2(𝜆𝜆) sinh 𝜆𝜆𝑦𝑦                                     (A. 20) 
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Transform (A.7-A.8) and (A.11-A.13), then use the transformed boundary conditions (A.16-A.18): 
 

Φ0��
𝑥𝑥=0

= 0                                                 (A. 21) 
 

(1 + 𝜈𝜈)�𝜅𝜅Φ2� −
𝜕𝜕Φ0�
𝜕𝜕𝑦𝑦

��
𝑥𝑥=0

= �2
𝜋𝜋

 
𝑖𝑖𝑢𝑢0
𝛿𝛿𝜆𝜆2

  (sin𝛿𝛿𝜆𝜆 − 𝛿𝛿𝜆𝜆 cos 𝐿𝐿𝜆𝜆)       (A. 22) 

 

�
𝜕𝜕
𝜕𝜕𝑦𝑦

�2(1 − 𝜈𝜈)Φ2� −
𝜕𝜕Φ0�
𝜕𝜕𝑦𝑦

� − 𝑦𝑦
𝜕𝜕2Φ2�
𝜕𝜕𝑦𝑦2

��
𝑥𝑥=1

= 0                                      (A. 23) 

 

�(1 − 2𝜈𝜈)Φ2� −
𝜕𝜕Φ0�
𝜕𝜕𝑦𝑦

− 𝑦𝑦
𝜕𝜕Φ2�
𝜕𝜕𝑦𝑦

��
𝑥𝑥=1

= 0                                      (A. 24) 

 
Solving (A.21-A.24) with respect to 𝜕𝜕0, 𝜕𝜕2, 𝐵𝐵0, 𝐵𝐵2: 
 

𝜕𝜕0(𝜆𝜆) = 0                                                 (A. 25) 
 

𝜕𝜕2(𝜆𝜆) = �2
𝜋𝜋

𝑖𝑖𝑢𝑢0(cosh(2𝜆𝜆) + 3 − 4𝜈𝜈)(sin (𝛿𝛿𝜆𝜆) − 𝛿𝛿𝜆𝜆 cos (𝐿𝐿𝜆𝜆))
𝛿𝛿𝜆𝜆2(𝜈𝜈 + 1)(2𝜆𝜆2 + (3 − 4𝜈𝜈)cosh (2𝜆𝜆) + 8𝜈𝜈2 − 12𝜈𝜈 + 5)

       (A. 26) 

 

𝐵𝐵0(𝜆𝜆) =  �
2
𝜋𝜋

2𝑖𝑖𝑢𝑢0(𝜆𝜆2 − 4𝜈𝜈2 + 6𝜈𝜈 − 2)(𝛿𝛿𝜆𝜆 cos(𝐿𝐿𝜆𝜆) − sin(𝛿𝛿𝜆𝜆))
𝛿𝛿𝜆𝜆2(𝜈𝜈 + 1)(2𝜆𝜆2 + (3 − 4𝜈𝜈) cosh(2𝜆𝜆) + 8𝜈𝜈2 − 12𝜈𝜈 + 5)      (A. 27) 

 

𝐵𝐵2(𝜆𝜆) = �2
𝜋𝜋

𝑖𝑖𝑢𝑢0 (sinh (2𝜆𝜆) − 2𝜆𝜆)(𝛿𝛿𝜆𝜆 cos (𝐿𝐿𝜆𝜆) − sin (𝛿𝛿𝜆𝜆))
𝛿𝛿𝜆𝜆2(𝜈𝜈 + 1)(2𝜆𝜆2 + (3 − 4𝜈𝜈)cosh (2𝜆𝜆) + 8𝜈𝜈2 − 12𝜈𝜈 + 5)

       (A. 28) 

 
For short notation, extract the common factor in (A.26-A.28): 
 

Ψ(𝜆𝜆) =
𝛿𝛿𝜆𝜆 cos(𝐿𝐿𝜆𝜆) − sin (𝛿𝛿𝜆𝜆)

𝛿𝛿𝜆𝜆2(𝜈𝜈 + 1)(2𝜆𝜆2 + (3 − 4𝜈𝜈)cosh (2𝜆𝜆) + 8𝜈𝜈2 − 12𝜈𝜈 + 5)
    (A. 29) 

 
Note that (A.29) is an odd function with respect to 𝜆𝜆: 
 

Ψ(−𝜆𝜆) = −Ψ(𝜆𝜆)                                                   (A. 30) 
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Rewrite (A.26-A.28) in terms of Ψ(𝜆𝜆): 
 

𝜕𝜕0(𝜆𝜆) = 0 
 

𝜕𝜕2(𝜆𝜆) = −𝑖𝑖𝑢𝑢0�
2
𝜋𝜋

(cosh(2𝜆𝜆) + 3 − 4𝜈𝜈)Ψ(𝜆𝜆)                                 (A. 31) 

 

𝐵𝐵0(𝜆𝜆) =  2𝑖𝑖𝑢𝑢0�
2
𝜋𝜋

(𝜆𝜆2 − 4𝜈𝜈2 + 6𝜈𝜈 − 2)Ψ(𝜆𝜆)                                 (A. 32) 

 

𝐵𝐵2(𝜆𝜆) = 𝑖𝑖𝑢𝑢0�
2
𝜋𝜋

(sinh (2𝜆𝜆) − 2𝜆𝜆)Ψ(𝜆𝜆)                                          (A. 33) 

 
The first potential is:  

Φ0 =
1

√2𝜋𝜋
� 𝐵𝐵0(𝜆𝜆)

sinh 𝜆𝜆𝑦𝑦
𝜆𝜆

∞

−∞

𝑒𝑒−𝑖𝑖𝑖𝑖𝑥𝑥𝑑𝑑𝜆𝜆                                 (A. 34) 

 
Due to (A.30), the integrand in (A.34) is odd with respect to integration variable 𝜆𝜆: 
 

𝐵𝐵0(−𝜆𝜆)
sinh(−𝜆𝜆𝑦𝑦)

−𝜆𝜆
= −𝐵𝐵0(𝜆𝜆)

sinh 𝜆𝜆𝑦𝑦
𝜆𝜆

                                 (A. 35) 
 
Therefore, the cosine part of the transform vanishes: 
 

� 𝐵𝐵0(𝜆𝜆)
sinh 𝜆𝜆𝑦𝑦

𝜆𝜆

∞

−∞

(cos 𝜆𝜆𝑥𝑥 − 𝑖𝑖 sin 𝜆𝜆𝑥𝑥)𝑑𝑑𝜆𝜆 = −𝑖𝑖 � 𝐵𝐵0(𝜆𝜆)
sinh 𝜆𝜆𝑦𝑦

𝜆𝜆

∞

−∞

sin 𝜆𝜆𝑥𝑥 𝑑𝑑𝜆𝜆

= −2𝑖𝑖 � 𝐵𝐵0(𝜆𝜆)
sinh 𝜆𝜆𝑦𝑦

𝜆𝜆

∞

0

sin 𝜆𝜆𝑥𝑥 𝑑𝑑𝜆𝜆

= 4𝑢𝑢0�
2
𝜋𝜋
�

sinh 𝜆𝜆𝑦𝑦
𝜆𝜆

∞

0

(𝜆𝜆2 − 4𝜈𝜈2 + 6𝜈𝜈 − 2)Ψ(𝜆𝜆) sin 𝜆𝜆𝑥𝑥 𝑑𝑑𝜆𝜆 

Thus: 
 

Φ0 =
4𝑢𝑢0
𝜋𝜋

� sin 𝜆𝜆𝑥𝑥
sinh 𝜆𝜆𝑦𝑦

𝜆𝜆

∞

0

(𝜆𝜆2 − 4𝜈𝜈2 + 6𝜈𝜈 − 2)Ψ(𝜆𝜆)𝑑𝑑𝜆𝜆                 (A. 36) 
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Differentiate (A.36) with respect to x: 
 

∂Φ0

∂x
=

4𝑢𝑢0
𝜋𝜋

� cos 𝜆𝜆𝑥𝑥 sinh 𝜆𝜆𝑦𝑦
∞

0

(𝜆𝜆2 − 4𝜈𝜈2 + 6𝜈𝜈 − 2)Ψ(𝜆𝜆)𝑑𝑑𝜆𝜆                    (A. 37) 

 
𝜕𝜕2Φ0

𝜕𝜕𝑥𝑥2
= −

4𝑢𝑢0
𝜋𝜋

� 𝜆𝜆 sin 𝜆𝜆𝑥𝑥 sinh 𝜆𝜆𝑦𝑦
∞

0

(𝜆𝜆2 − 4𝜈𝜈2 + 6𝜈𝜈 − 2)Ψ(𝜆𝜆)𝑑𝑑𝜆𝜆            (A. 38) 

 
Now differentiate with respect to y: 
 

∂Φ0

∂y
=

4𝑢𝑢0
𝜋𝜋

� sin 𝜆𝜆𝑥𝑥 cosh 𝜆𝜆𝑦𝑦
∞

0

(𝜆𝜆2 − 4𝜈𝜈2 + 6𝜈𝜈 − 2)Ψ(𝜆𝜆)𝑑𝑑𝜆𝜆           (A. 39) 

 
𝜕𝜕2Φ0

𝜕𝜕𝑦𝑦2
=

4𝑢𝑢0
𝜋𝜋

� 𝜆𝜆 sin 𝜆𝜆𝑥𝑥 sinh 𝜆𝜆𝑦𝑦
∞

0

(𝜆𝜆2 − 4𝜈𝜈2 + 6𝜈𝜈 − 2)Ψ(𝜆𝜆)𝑑𝑑𝜆𝜆        (A. 40) 

 
Verify that Φ0 is harmonic, i.e., its Laplacian must be zero: 
 

𝜕𝜕2Φ0

𝜕𝜕𝑥𝑥2
+
𝜕𝜕2Φ0

𝜕𝜕𝑦𝑦2
= −

4𝑢𝑢0
𝜋𝜋

� 𝜆𝜆 sin 𝜆𝜆𝑥𝑥 sinh 𝜆𝜆𝑦𝑦
∞

0

(𝜆𝜆2 − 4𝜈𝜈2 + 6𝜈𝜈 − 2)Ψ(𝜆𝜆)𝑑𝑑𝜆𝜆  

+
4𝑢𝑢0
𝜋𝜋

� 𝜆𝜆 sin 𝜆𝜆𝑥𝑥 sinh 𝜆𝜆𝑦𝑦
∞

0

(𝜆𝜆2 − 4𝜈𝜈2 + 6𝜈𝜈 − 2)Ψ(𝜆𝜆)𝑑𝑑𝜆𝜆 = 0        

 
Now, consider the second potential (A.14). As observed from (A.31) and (A.33) using (A.30): 
 

𝜕𝜕2(−𝜆𝜆) = −𝜕𝜕2(𝜆𝜆), 𝐵𝐵2(−𝜆𝜆) = 𝐵𝐵2(𝜆𝜆) 
 
Therefore, the integrand in Φ2(𝑥𝑥,𝑦𝑦) is an odd function with respect to 𝜆𝜆, as shown below: 
 

𝜕𝜕2(−𝜆𝜆)cosh(−𝜆𝜆𝑦𝑦) + 𝐵𝐵2 (−𝜆𝜆)sinh(−𝜆𝜆𝑦𝑦) = −𝜕𝜕2(𝜆𝜆)cosh(𝜆𝜆𝑦𝑦)− 𝐵𝐵2 (𝜆𝜆)sinh(𝜆𝜆𝑦𝑦)      (A. 41) 
 
This implies that the cosine part of integral (A.14) vanishes: 
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�(𝜕𝜕2(𝜆𝜆) cosh 𝜆𝜆𝑦𝑦 + 𝐵𝐵2 (𝜆𝜆)sinh 𝜆𝜆𝑦𝑦)
∞

−∞

(cos 𝜆𝜆𝑥𝑥 − 𝑖𝑖 sin 𝜆𝜆𝑥𝑥)𝑑𝑑𝜆𝜆 =

= −2𝑖𝑖 �(𝜕𝜕2(𝜆𝜆) cosh 𝜆𝜆𝑦𝑦 + 𝐵𝐵2 (𝜆𝜆)sinh 𝜆𝜆𝑦𝑦)
∞

0

sin 𝜆𝜆𝑥𝑥 𝑑𝑑𝜆𝜆

= 2𝑢𝑢0�
2
𝜋𝜋
� Ψ(𝜆𝜆) 
∞

0

(−(cosh(2𝜆𝜆) + 3 − 4𝜈𝜈) cosh 𝜆𝜆𝑦𝑦 + (sinh (2𝜆𝜆)

− 2𝜆𝜆) sinh 𝜆𝜆𝑦𝑦) sin 𝜆𝜆𝑥𝑥 𝑑𝑑𝜆𝜆 
 
Thus: 
 

Φ2(𝑥𝑥,𝑦𝑦) =
2𝑢𝑢0
𝜋𝜋

� Ψ(𝜆𝜆) 
∞

0

(−𝜅𝜅 cosh𝑦𝑦𝜆𝜆 − 2𝜆𝜆 sinh𝑦𝑦𝜆𝜆 − cosh 𝜆𝜆(𝑦𝑦 − 2)) sin 𝜆𝜆𝑥𝑥 𝑑𝑑𝜆𝜆 . (B. 42) 

 
Differentiate (A.42) along the x variable: 
 

∂Φ2

∂x
=

2𝑢𝑢0
𝜋𝜋

� Ψ(𝜆𝜆) 
∞

0

(−𝜅𝜅 cosh 𝑦𝑦𝜆𝜆 − 2𝜆𝜆 sinh 𝑦𝑦𝜆𝜆 − cosh 𝜆𝜆(𝑦𝑦 − 2))𝜆𝜆 cos 𝜆𝜆𝑥𝑥 𝑑𝑑𝜆𝜆       (A. 43) 

 
𝜕𝜕2Φ2

𝜕𝜕𝑥𝑥2
=

2𝑢𝑢0
𝜋𝜋

� Ψ(𝜆𝜆) 
∞

0

(𝜅𝜅 cosh 𝑦𝑦𝜆𝜆 + 2𝜆𝜆 sinh𝑦𝑦𝜆𝜆 + cosh 𝜆𝜆(𝑦𝑦 − 2))𝜆𝜆2 sin 𝜆𝜆𝑥𝑥 𝑑𝑑𝜆𝜆      (A. 44) 

 
Differentiate along y: 
 

∂Φ2

∂y
=

2𝑢𝑢0
𝜋𝜋

� Ψ(𝜆𝜆) 
∞

0

𝜆𝜆(−𝜅𝜅 sinh𝑦𝑦𝜆𝜆 − 2𝜆𝜆 cosh𝑦𝑦𝜆𝜆 − sinh 𝜆𝜆(𝑦𝑦 − 2)) sin 𝜆𝜆𝑥𝑥 𝑑𝑑𝜆𝜆     (A. 45) 

 
𝜕𝜕2Φ2

𝜕𝜕𝑦𝑦2
=

2𝑢𝑢0
𝜋𝜋

� Ψ(𝜆𝜆) 
∞

0

𝜆𝜆2(−𝜅𝜅 cosh 𝑦𝑦𝜆𝜆 − 2𝜆𝜆 sinh𝑦𝑦𝜆𝜆 − cosh 𝜆𝜆(𝑦𝑦 − 2)) sin 𝜆𝜆𝑥𝑥 𝑑𝑑𝜆𝜆   (A. 46) 

 
Verify that Φ2 is harmonic, i.e., its Laplacian must be zero: 
 
𝜕𝜕2Φ2

𝜕𝜕𝑥𝑥2
+
𝜕𝜕2Φ2

𝜕𝜕𝑦𝑦2
=

2𝑢𝑢0
𝜋𝜋

� Ψ(𝜆𝜆) 
∞

0

(𝜅𝜅 cosh𝑦𝑦𝜆𝜆 + 2𝜆𝜆 sinh𝑦𝑦𝜆𝜆 + cosh 𝜆𝜆(𝑦𝑦 − 2))𝜆𝜆2 sin 𝜆𝜆𝑥𝑥 𝑑𝑑𝜆𝜆

+
2𝑢𝑢0
𝜋𝜋

� Ψ(𝜆𝜆) 
∞

0

𝜆𝜆2(−𝜅𝜅 cosh𝑦𝑦𝜆𝜆 − 2𝜆𝜆 sinh𝑦𝑦𝜆𝜆 − cosh 𝜆𝜆(𝑦𝑦 − 2)) sin 𝜆𝜆𝑥𝑥 𝑑𝑑𝜆𝜆 = 0        
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Compute 𝑢𝑢𝑥𝑥 from (A.7) using derivatives (A.37) and (A.43). First:  
 

−
𝜕𝜕Φ0

𝜕𝜕𝑥𝑥
− 𝑦𝑦

𝜕𝜕Φ2

𝜕𝜕𝑥𝑥
=

= −
4𝑢𝑢0
𝜋𝜋

� cos 𝜆𝜆𝑥𝑥 sinh 𝜆𝜆𝑦𝑦
∞

0

(𝜆𝜆2 − 4𝜈𝜈2 + 6𝜈𝜈 − 2)Ψ(𝜆𝜆)𝑑𝑑𝜆𝜆

+
2𝑢𝑢0
𝜋𝜋

� Ψ(𝜆𝜆) 
∞

0

𝑦𝑦(𝜅𝜅 cosh 𝑦𝑦𝜆𝜆 + 2𝜆𝜆 sinh𝑦𝑦𝜆𝜆 + cosh 𝜆𝜆(𝑦𝑦 − 2))𝜆𝜆 cos 𝜆𝜆𝑥𝑥 𝑑𝑑𝜆𝜆

=  
2𝑢𝑢0
𝜋𝜋

� Ψ(𝜆𝜆) 
∞

0

{−2 sinh 𝜆𝜆𝑦𝑦 (𝜆𝜆2 − 4𝜈𝜈2 + 6𝜈𝜈 − 2)

+ 𝜆𝜆𝑦𝑦(𝜅𝜅 cosh 𝑦𝑦𝜆𝜆 + 2𝜆𝜆 sinh 𝑦𝑦𝜆𝜆 + cosh 𝜆𝜆(𝑦𝑦 − 2))} cos 𝜆𝜆𝑥𝑥 𝑑𝑑𝜆𝜆 
 
Thus, horizontal displacement:  
 

𝑢𝑢𝑥𝑥(𝑥𝑥,𝑦𝑦) =
2𝑢𝑢0
𝜋𝜋

�
(𝛿𝛿𝜆𝜆 cos(𝐿𝐿𝜆𝜆) − sin 𝛿𝛿𝜆𝜆) cos 𝜆𝜆𝑥𝑥

𝛿𝛿𝜆𝜆2(2𝜆𝜆2 + 𝜅𝜅 cosh(2𝜆𝜆) + 8𝜈𝜈2 − 12𝜈𝜈 + 5) 
∞

0

{−2 sinh 𝜆𝜆𝑦𝑦 (𝜆𝜆2 − 4𝜈𝜈2 + 6𝜈𝜈 − 2)

+ 𝜆𝜆𝑦𝑦(𝜅𝜅 cosh 𝑦𝑦𝜆𝜆 + 2𝜆𝜆 sinh𝑦𝑦𝜆𝜆 + cosh 𝜆𝜆(𝑦𝑦 − 2))} 𝑑𝑑𝜆𝜆                                      (A. 47) 
 
Then in a similar way, compute vertical displacement 𝑢𝑢𝑥𝑥 from equation (A.8) using equations 
(A.39), (A.42), and (A.45): 
 

𝑢𝑢𝑥𝑥(𝑥𝑥, 𝑦𝑦) =
2𝑢𝑢0
𝜋𝜋

�
(𝛿𝛿𝜆𝜆 cos(𝐿𝐿𝜆𝜆) − sin 𝛿𝛿𝜆𝜆) sin 𝜆𝜆𝑥𝑥

𝛿𝛿𝜆𝜆2(2𝜆𝜆2 + 𝜅𝜅 cosh(2𝜆𝜆) + 8𝜈𝜈2 − 12𝜈𝜈 + 5) {(2(𝑦𝑦 − 1)𝜆𝜆2 − 8𝜈𝜈2 + 12𝜈𝜈
∞

0
− 5) cosh 𝑦𝑦𝜆𝜆 + 𝜆𝜆(𝑦𝑦 sinh(𝑦𝑦 − 2)𝜆𝜆 + (𝑦𝑦 − 2)𝜅𝜅 sinh 𝑦𝑦𝜆𝜆) − 𝜅𝜅 cosh(𝑦𝑦 − 2)𝜆𝜆)} 𝑑𝑑𝜆𝜆 

         (A. 48) 
 
Now derive the stresses in (A.11) and (A.12). First, (A.11): 
 

𝜎𝜎𝑥𝑥𝑥𝑥 =
2𝑢𝑢0
𝜋𝜋

�
(𝛿𝛿𝜆𝜆 cos(𝐿𝐿𝜆𝜆)− sin 𝛿𝛿𝜆𝜆) sin 𝜆𝜆𝑥𝑥

𝛿𝛿𝜆𝜆(𝜈𝜈 + 1)(2𝜆𝜆2 + 𝜅𝜅cosh (2𝜆𝜆) + 8𝜈𝜈2 − 12𝜈𝜈 + 5)
 

∞

0

�2 ��(𝑦𝑦 − 1)𝜆𝜆2 + 𝜈𝜈

− 1� sinh(𝑦𝑦𝜆𝜆) + (𝜈𝜈 − 1) sinh�(𝑦𝑦 − 2)𝜆𝜆��+ 𝜆𝜆(𝜅𝜅𝑦𝑦 + 4𝜈𝜈 − 4) cosh(𝑦𝑦𝜆𝜆)

+ 𝑦𝑦𝜆𝜆 cosh�(𝑦𝑦 − 2)𝜆𝜆�� 𝑑𝑑𝜆𝜆                                                                                     (A. 49) 
 
Next, derive the stress in (A.12):  
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𝜎𝜎𝑥𝑥𝑥𝑥(𝑥𝑥,𝑦𝑦) =
2𝑢𝑢0
𝜋𝜋

�
(𝛿𝛿𝜆𝜆 cos(𝐿𝐿𝜆𝜆) − sin 𝛿𝛿𝜆𝜆) cos 𝜆𝜆𝑥𝑥

𝛿𝛿𝜆𝜆(𝜈𝜈 + 1)(2𝜆𝜆2 + 𝜅𝜅 cosh(2𝜆𝜆) + 8𝜈𝜈2 − 12𝜈𝜈 + 5) 
∞

0

{(2(𝑦𝑦 − 1)𝜆𝜆2 − 2𝜈𝜈

+ 1) cosh 𝑦𝑦𝜆𝜆 + 𝜆𝜆 ((𝜅𝜅𝑦𝑦 + 4𝜈𝜈 − 2) sinh𝑦𝑦𝜆𝜆 + 𝑦𝑦 sinh(𝑦𝑦 − 2)𝜆𝜆)
+ (2𝜈𝜈 − 1) cosh(𝑦𝑦 − 2)𝜆𝜆}𝑑𝑑𝜆𝜆                                                                               (A. 50) 

 
Now, inserting Φ0,Φ2 into (A.10): 
 

𝜎𝜎𝑥𝑥𝑥𝑥(𝑥𝑥,𝑦𝑦) = −
2𝑢𝑢0
𝜋𝜋

�
(𝛿𝛿𝜆𝜆 cos(𝐿𝐿𝜆𝜆) − sin 𝛿𝛿𝜆𝜆) sin 𝜆𝜆𝑥𝑥

𝛿𝛿𝜆𝜆(𝜈𝜈 + 1)(2𝜆𝜆2 + 𝜅𝜅 cosh(2𝜆𝜆) + 8𝜈𝜈2 − 12𝜈𝜈 + 5) 
∞

0

�2 ��(𝑦𝑦 − 1)𝜆𝜆2 − 3𝜈𝜈

+ 2� sinh𝑦𝑦𝜆𝜆 + 𝜈𝜈 sinh(𝑦𝑦 − 2)𝜆𝜆� + 𝜆𝜆(𝜅𝜅𝑦𝑦 + 4𝜈𝜈) cosh𝑦𝑦𝜆𝜆

+ 𝑦𝑦𝜆𝜆 cosh(𝑦𝑦 − 2)𝜆𝜆�𝑑𝑑𝜆𝜆                                                                                           (A. 52) 
 
Verify that the derived displacements in (A.47) and (A.48) satisfy boundary conditions at y = 0: 
 

𝑢𝑢𝑥𝑥(𝑥𝑥, 0) =
2𝑢𝑢0
𝜋𝜋

�
(𝛿𝛿𝜆𝜆 cos(𝐿𝐿𝜆𝜆) − sin 𝛿𝛿𝜆𝜆) cos 𝜆𝜆𝑥𝑥

𝛿𝛿𝜆𝜆2(2𝜆𝜆2 + 𝜅𝜅 cosh(2𝜆𝜆) + 8𝜈𝜈2 − 12𝜈𝜈 + 5) 
∞

0

0 𝑑𝑑𝜆𝜆 = 0      (A. 53) 

 

𝑢𝑢𝑥𝑥(𝑥𝑥, 0) =
2𝑢𝑢0
𝜋𝜋

�
(𝛿𝛿𝜆𝜆 cos(𝐿𝐿𝜆𝜆)− sin 𝛿𝛿𝜆𝜆) sin 𝜆𝜆𝑥𝑥

𝛿𝛿𝜆𝜆2(2𝜆𝜆2 + 𝜅𝜅 cosh(2𝜆𝜆) + 8𝜈𝜈2 − 12𝜈𝜈 + 5) {(−2𝜆𝜆2 − 8𝜈𝜈2 + 12𝜈𝜈 − 5)
∞

0

− 𝜅𝜅 cosh 2𝜆𝜆)} 𝑑𝑑𝜆𝜆 =
2𝑢𝑢0
𝜋𝜋

�
−(𝛿𝛿𝜆𝜆 cos(𝐿𝐿𝜆𝜆) − sin 𝛿𝛿𝜆𝜆) sin 𝜆𝜆𝑥𝑥

𝛿𝛿𝜆𝜆2
 

∞

0

𝑑𝑑𝜆𝜆 =

=
𝑢𝑢0
𝜋𝜋
𝑖𝑖 �

(𝛿𝛿𝜆𝜆 cos(𝐿𝐿𝜆𝜆)− sin 𝛿𝛿𝜆𝜆)𝑖𝑖 sin 𝜆𝜆𝑥𝑥
𝛿𝛿𝜆𝜆2

 
∞

−∞

𝑑𝑑𝜆𝜆 =

=
𝑢𝑢0
𝜋𝜋
𝑖𝑖 �

(sin 𝛿𝛿𝜆𝜆 − 𝛿𝛿𝜆𝜆 cos(𝐿𝐿𝜆𝜆))
𝛿𝛿𝜆𝜆2

 
∞

−∞

𝑒𝑒−𝑖𝑖𝑖𝑖𝑥𝑥𝑑𝑑𝜆𝜆 =

=
1

√2𝜋𝜋
� �2

𝜋𝜋
 
𝑖𝑖𝑢𝑢0
𝛿𝛿𝜆𝜆2

 (sin 𝛿𝛿𝜆𝜆 − 𝛿𝛿𝜆𝜆 cos 𝐿𝐿𝜆𝜆)  
∞

−∞

𝑒𝑒−𝑖𝑖𝑖𝑖𝑥𝑥𝑑𝑑𝜆𝜆 =

= 𝑢𝑢0  �
𝑥𝑥 𝛿𝛿⁄ , |𝑥𝑥| ≤ 𝛿𝛿

𝑠𝑠𝑖𝑖𝑠𝑠𝑑𝑑 (𝑥𝑥), 𝛿𝛿 ≤ |𝑥𝑥| ≤ 𝐿𝐿
0, |𝑥𝑥| > 𝐿𝐿

                                                                  (A. 54) 

 
In this step, we verified that the displacements (A.47) and (A.48) satisfy both boundary conditions 
(A.1) and (A.2), as well as the governing equations. 
 
Verify that derived stresses satisfy zero traction boundary conditions at y = 1: 
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𝜎𝜎𝑥𝑥𝑥𝑥(𝑥𝑥, 1) =
2𝑢𝑢0
𝜋𝜋

�
(𝛿𝛿𝜆𝜆 cos(𝐿𝐿𝜆𝜆)− sin(𝛿𝛿𝜆𝜆)) sin 𝜆𝜆𝑥𝑥 0𝑑𝑑𝜆𝜆

𝛿𝛿𝜆𝜆(𝜈𝜈 + 1)(2𝜆𝜆2 + 𝜅𝜅 cosh(2𝜆𝜆) + 8𝜈𝜈2 − 12𝜈𝜈 + 5) 
∞

0

= 0       (A. 55) 

 

𝜎𝜎𝑥𝑥𝑥𝑥(𝑥𝑥, 1) =
2𝑢𝑢0
𝜋𝜋

�
(𝛿𝛿𝜆𝜆 cos(𝐿𝐿𝜆𝜆)− sin(𝛿𝛿𝜆𝜆)) cos 𝜆𝜆𝑥𝑥

𝛿𝛿𝜆𝜆(𝜈𝜈 + 1)(2𝜆𝜆2 + 𝜅𝜅 cosh(2𝜆𝜆) + 8𝜈𝜈2 − 12𝜈𝜈 + 5) 
∞

0

{(−2𝜈𝜈 + 1) cosh 𝜆𝜆

+ 𝜆𝜆((𝜅𝜅 + 4𝜈𝜈 − 2) sinh 𝜆𝜆 − sinh 𝜆𝜆) + (2𝜈𝜈 − 1) cosh 𝜆𝜆}𝑑𝑑𝜆𝜆
= 0                      (𝐵𝐵. 56) 

 
For certain applications it is useful to derive the shear stress 𝑡𝑡𝑐𝑐(𝑦𝑦) = 𝜎𝜎𝑥𝑥𝑥𝑥(0,𝑦𝑦) along the vertical 
crack axis at 𝑥𝑥 = 0. From equation (A.50), it follows that: 
 

𝜎𝜎𝑥𝑥𝑥𝑥(0,𝑦𝑦) =
2𝑢𝑢0
𝜋𝜋

�
(𝛿𝛿𝜆𝜆 cos(𝐿𝐿𝜆𝜆) − sin 𝛿𝛿𝜆𝜆)

𝛿𝛿𝜆𝜆(𝜈𝜈 + 1)(2𝜆𝜆2 + 𝜅𝜅 cosh(2𝜆𝜆) + 8𝜈𝜈2 − 12𝜈𝜈 + 5) 
∞

0

{(2(𝑦𝑦 − 1)𝜆𝜆2 − 2𝜈𝜈

+ 1) cosh 𝑦𝑦𝜆𝜆 + 𝜆𝜆 ((𝜅𝜅𝑦𝑦 + 4𝜈𝜈 − 2) sinh𝑦𝑦𝜆𝜆 + 𝑦𝑦 sinh(𝑦𝑦 − 2)𝜆𝜆)
+ (2𝜈𝜈 − 1) cosh(𝑦𝑦 − 2)𝜆𝜆}𝑑𝑑𝜆𝜆                                                                               (A. 57) 

 
If the joint spacing 𝛿𝛿 → 0 between concrete slabs is negligibly small, the stress (A.57) yields:  
 

𝑡𝑡𝑐𝑐(𝑦𝑦) = lim
𝛿𝛿 →0

𝜎𝜎𝑥𝑥𝑥𝑥(0,𝑦𝑦) =
2𝑢𝑢0

𝜋𝜋(𝜈𝜈 + 1)�(cos(𝐿𝐿𝜆𝜆) − 1) 
∞

0

𝑇𝑇(𝑦𝑦, 𝜈𝜈;  𝜆𝜆)𝑑𝑑𝜆𝜆                (A. 58) 

where: 

𝑇𝑇(𝑦𝑦, 𝜈𝜈;  𝜆𝜆) =
(2(𝑦𝑦 − 1)𝜆𝜆2 − 2𝜈𝜈 + 1) cosh𝑦𝑦𝜆𝜆

2𝜆𝜆2 + 𝜅𝜅 cosh(2𝜆𝜆) + 8𝜈𝜈2 − 12𝜈𝜈 + 5
+ 

 

+
𝜆𝜆 �(𝜅𝜅𝑦𝑦 + 4𝜈𝜈 − 2) sinh 𝑦𝑦𝜆𝜆 + 𝑦𝑦 sinh(𝑦𝑦 − 2)𝜆𝜆�

2𝜆𝜆2 + 𝜅𝜅 cosh(2𝜆𝜆) + 8𝜈𝜈2 − 12𝜈𝜈 + 5
+                           (A. 59) 

 

+
(2𝜈𝜈 − 1) cosh(𝑦𝑦 − 2)𝜆𝜆

2𝜆𝜆2 + 𝜅𝜅 cosh(2𝜆𝜆) + 8𝜈𝜈2 − 12𝜈𝜈 + 5
 

 
Separate (A.58) into two integrals: 
 

𝑡𝑡𝑐𝑐(𝑦𝑦) =
2𝑢𝑢0

𝜋𝜋(𝜈𝜈 + 1) (𝐼𝐼1 + 𝐼𝐼2)                                                   (A. 60) 

where: 

𝐼𝐼1 = −� 𝑇𝑇(𝑦𝑦, 𝜈𝜈;  𝜆𝜆) 
∞

0

𝑑𝑑𝜆𝜆 ;          𝐼𝐼2 = � cos(𝐿𝐿𝜆𝜆) 
∞

0

𝑇𝑇(𝑦𝑦, 𝜈𝜈;  𝜆𝜆) 𝑑𝑑𝜆𝜆                      (A. 61) 

 
Since cos(𝐿𝐿𝜆𝜆) is highly oscillatory on [0,∞) for sufficiently large slab lengths 𝐿𝐿 > 10 
(figure A-3), it follows that 𝐼𝐼2 is close to zero and much smaller than 𝐼𝐼1.  
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Figure A-3. Integrand of 𝐼𝐼2 when 𝐿𝐿 = 40 
 

Therefore, for thin slabs we can approximate (A.60) as follows: 
 

𝑡𝑡𝑐𝑐(𝑦𝑦) ≈
2𝑢𝑢0

𝜋𝜋(𝜈𝜈 + 1) 𝐼𝐼1(𝑦𝑦, 𝜈𝜈)                                                 (A. 62) 

 
The function 𝑇𝑇(𝑦𝑦, 𝜈𝜈;  𝜆𝜆) in (A. 59) has an asymptote 𝑇𝑇𝑎𝑎𝑎𝑎(𝑦𝑦, 𝜈𝜈;  𝜆𝜆) as 𝜆𝜆 → ∞ as follows: 
 
𝑇𝑇(𝑦𝑦, 𝜈𝜈;  𝜆𝜆)~𝑇𝑇𝑎𝑎𝑎𝑎(𝑦𝑦, 𝜈𝜈;  𝜆𝜆)

=
𝑒𝑒(𝑥𝑥−2)𝑖𝑖(2(𝑦𝑦 − 1)𝜆𝜆2 − 2𝜈𝜈 + 1)

3 − 4𝜈𝜈
+

(2𝜈𝜈 − 1)𝑒𝑒−𝑥𝑥𝑖𝑖

3 − 4𝜈𝜈
                                           

+
2𝑒𝑒−2𝑖𝑖𝜆𝜆(1

2 (𝑒𝑒𝑥𝑥𝑖𝑖 − 𝑒𝑒−𝑥𝑥𝑖𝑖)(−4𝑦𝑦𝜈𝜈 + 3𝑦𝑦 + 4𝜈𝜈 − 2) + 1
2𝑦𝑦(𝑒𝑒(𝑥𝑥−2)𝑖𝑖 − 𝑒𝑒(2−𝑥𝑥)𝑖𝑖))

3 − 4𝜈𝜈
 

 (A.63) 
 
The asymptote (A.63) provides an asymptote 𝐼𝐼1,𝑎𝑎𝑎𝑎 for the integral 𝐼𝐼1 in (A.61) after performing the 
following integration: 

𝐼𝐼1,𝑎𝑎𝑎𝑎(𝑦𝑦, 𝜈𝜈) = −� 𝑇𝑇𝑎𝑎𝑎𝑎(𝑦𝑦, 𝜈𝜈;  𝜆𝜆) 
∞

0

𝑑𝑑𝜆𝜆 = 

=
2(𝑦𝑦 − 1)

(𝑦𝑦 − 4)2(𝑦𝑦 − 2)3𝑦𝑦(𝑦𝑦 + 2)2(3 − 4𝜈𝜈) �2 ��(𝑦𝑦 − 8)𝑦𝑦 + 8�𝑦𝑦2 + 16� (𝑦𝑦 − 4)2𝜈𝜈

− 𝑦𝑦2�𝑦𝑦�𝑦𝑦�(𝑦𝑦 − 22)𝑦𝑦 + 128� − 280� + 144� − 512�                                    (A. 64) 
  
Despite the simplicity of formula (A.64) for 𝐼𝐼1,𝑎𝑎𝑎𝑎, it approximates 𝐼𝐼1 quite accurately (figure A-4). 
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Figure A-4. Comparison of 𝐼𝐼1 (solid) vs 𝐼𝐼1,𝑎𝑎𝑎𝑎 (dashed) When 𝜈𝜈 = 0.35  
 
Inserting (A.64) into (A.62), the shear stress from (A.60) can be computed approximately as 
follows:  
 

𝑡𝑡𝑐𝑐(𝑦𝑦) =
2𝑢𝑢0

𝜋𝜋(𝜈𝜈 + 1)
2(𝑦𝑦 − 1)

(𝑦𝑦 − 4)2(𝑦𝑦 − 2)3𝑦𝑦(𝑦𝑦 + 2)2(3 − 4𝜈𝜈) �2 ��(𝑦𝑦 − 8)𝑦𝑦 + 8�𝑦𝑦2 + 16� (𝑦𝑦 − 4)2𝜈𝜈

− 𝑦𝑦2�𝑦𝑦�𝑦𝑦�(𝑦𝑦 − 22)𝑦𝑦 + 128� − 280� + 144� − 512�                                     
 (A.65) 
 
Formula (A.65) provides the solution to the problem in the uncracked domain when boundary 
vertical displacements are prescribed. 
 
REFERENCE 
 
Uflyand, Ja. S. (1968). Integral transforms in problems of elasticity theory [in Russian], 2nd 

edition. Nauka, Leningrad. 
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APPENDIX B—STRESS INTENSITY FACTOR FOR EDGE CRACK 

Following the solution for the full domain (Appendix A), the next step is to solve problem A 
(figure B-1) where: (1) the displacement on the bottom surface (y = 0) is zero, and (2) the crack 
faces are loaded by shear stresses −𝑡𝑡𝑐𝑐(𝑦𝑦) in the opposite direction to the shear stress at the crack 
location in the uncracked material.  
 
Note that 𝑡𝑡𝑐𝑐 does not depend on crack length. 

  

 
 

Figure B-1. Problem A with Edge Crack 
 

To solve problem A for an edge crack of length 𝑎𝑎, we extend the domain of the original problem 
by reflecting it on 𝑦𝑦 = 0. To maintain zero displacement at 𝑦𝑦 = 0, we reflect the tractions onto the 
reflected crack as follows: 
  

𝑡𝑡𝑐𝑐(−𝑦𝑦) = −𝑡𝑡𝑐𝑐(𝑦𝑦)                                                              (B. 1) 
 
As a result, problem B has an internal crack of length 2𝑎𝑎. The stress intensity factor (SIF) at the 
upper tip of this internal crack will be the same as in problem A. 
 

 
 

Figure B-2. Problem B with Internal Crack 
 
For an internal crack, the SIFs are well-known from the literature (Sun & Jin, 2012): 
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𝐾𝐾𝐼𝐼𝐼𝐼 =
1

√𝜋𝜋𝑎𝑎
� 𝑡𝑡𝑐𝑐(𝑦𝑦)
𝑎𝑎

−𝑎𝑎

�
𝑎𝑎 + 𝑦𝑦
𝑎𝑎 − 𝑦𝑦

𝑑𝑑𝑦𝑦                                           (B. 2) 

 
Substituting the property (B.1) into (B.2) yields:   
 

𝐾𝐾𝐼𝐼𝐼𝐼 =
1

√𝜋𝜋𝑎𝑎
� � 𝑡𝑡𝑐𝑐(𝑦𝑦)

0

−𝑎𝑎

�
𝑎𝑎 + 𝑦𝑦
𝑎𝑎 − 𝑦𝑦

𝑑𝑑𝑦𝑦 + �𝑡𝑡𝑐𝑐(𝑦𝑦)
𝑎𝑎

0

�
𝑎𝑎 + 𝑦𝑦
𝑎𝑎 − 𝑦𝑦

𝑑𝑑𝑦𝑦� =

=
1

√𝜋𝜋𝑎𝑎
�−� 𝑡𝑡𝑐𝑐(−𝑦𝑦)

0

𝑎𝑎

�
𝑎𝑎 − 𝑦𝑦
𝑎𝑎 + 𝑦𝑦

𝑑𝑑𝑦𝑦 + �𝑡𝑡𝑐𝑐(𝑦𝑦)
𝑎𝑎

0

�
𝑎𝑎 + 𝑦𝑦
𝑎𝑎 − 𝑦𝑦

𝑑𝑑𝑦𝑦� =

=
1

√𝜋𝜋𝑎𝑎
�𝑑𝑑𝑦𝑦
𝑎𝑎

0

�−𝑡𝑡𝑐𝑐(𝑦𝑦)�
𝑎𝑎 − 𝑦𝑦
𝑎𝑎 + 𝑦𝑦

+ 𝑡𝑡𝑐𝑐(𝑦𝑦)�
𝑎𝑎 + 𝑦𝑦
𝑎𝑎 − 𝑦𝑦

� =

=
1

√𝜋𝜋𝑎𝑎
� 𝑡𝑡𝑐𝑐(𝑦𝑦)
𝑎𝑎

0

��
𝑎𝑎 + 𝑦𝑦
𝑎𝑎 − 𝑦𝑦

−�
𝑎𝑎 − 𝑦𝑦
𝑎𝑎 + 𝑦𝑦

�𝑑𝑑𝑦𝑦                                                                (B. 3) 

 
Finally, inserting the stress (B.1) into the expression in (B.3) gives the SIF for Mode II. Table B-1 
compares the results of (B.3) to the finite element model (FEM) analysis in ABAQUS software of 
the same problem. when elastic modulus is equal to one and Poisson’s ratio 𝜈𝜈 = 0.35  
 

Table B-1. Comparison of Mode II SIFs from FEM and Equation (B.3) 
 

Crack Length, a/h 𝐾𝐾𝐼𝐼𝐼𝐼 , FEM [Pa √m] 𝐾𝐾𝐼𝐼𝐼𝐼 , (C.2) Numerical [Pa √m] 
0.1 -0.019 -0.021 
0.2 -0.0135 -0.0156 
0.3 -0.0109 -0.0118 
0.4 -0.0095 -0.0111 
0.5 -0.0085 -0.0092 
0.6 -0.00792 -0.0090 
0.7 -0.00750 -0.0075 
0.8 -0.00736 -0.00731 

 
Additionally: 
 

𝐾𝐾𝐼𝐼𝐼𝐼 =
2𝑢𝑢0

𝜋𝜋√𝜋𝜋𝑎𝑎(𝜈𝜈 + 1)
�𝐼𝐼1(𝑦𝑦, 𝜈𝜈) 
𝑎𝑎

0

��
𝑎𝑎 + 𝑦𝑦
𝑎𝑎 − 𝑦𝑦

− �
𝑎𝑎 − 𝑦𝑦
𝑎𝑎 + 𝑦𝑦

�𝑑𝑑𝑦𝑦                     (B. 4) 
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Inserting 𝐼𝐼1,𝑎𝑎𝑎𝑎 from (A.64) into (B.4) yields: 
 
𝐾𝐾𝐼𝐼𝐼𝐼 = 2𝑢𝑢0

𝜋𝜋√𝜋𝜋𝑎𝑎(𝜈𝜈+1)∫
2(𝑥𝑥−1)

(𝑥𝑥−4)2(𝑥𝑥−2)3𝑥𝑥(𝑥𝑥+2)2(3−4𝜈𝜈) �2 ��(𝑦𝑦 − 8)𝑦𝑦 + 8�𝑦𝑦2 + 16� (𝑦𝑦 − 4)2𝜈𝜈 −𝑎𝑎
0

𝑦𝑦2�𝑦𝑦�𝑦𝑦�(𝑦𝑦 − 22)𝑦𝑦 + 128� − 280� + 144� − 512� ��𝑎𝑎+𝑥𝑥
𝑎𝑎−𝑥𝑥

− �
𝑎𝑎−𝑥𝑥
𝑎𝑎+𝑥𝑥

�  𝑑𝑑𝑦𝑦 =

− 1
(𝑎𝑎−4)(𝑎𝑎+4)(4𝜈𝜈−3)𝑒𝑒12�𝑎𝑎𝑒𝑒3

2 �16�64�𝑎𝑎3𝑑𝑑3 − 20�𝑎𝑎7𝑑𝑑3 + �𝑎𝑎11𝑑𝑑3�𝜈𝜈 + 3072𝑖𝑖 log(2)�𝑎𝑎𝑑𝑑2𝜈𝜈 −

1024𝜋𝜋�𝑎𝑎𝑑𝑑2𝜈𝜈 − 2752𝑖𝑖 log(2)�𝑎𝑎5𝑑𝑑2𝜈𝜈 + 832𝜋𝜋�𝑎𝑎5𝑑𝑑2𝜈𝜈 + 608𝑖𝑖 log(2)�𝑎𝑎9𝑑𝑑2𝜈𝜈 −
176𝜋𝜋�𝑎𝑎9𝑑𝑑2𝜈𝜈 − 28𝑖𝑖 log(2)�𝑎𝑎13𝑑𝑑2𝜈𝜈 + 8𝜋𝜋�𝑎𝑎13𝑑𝑑2𝜈𝜈 − 512𝜋𝜋�𝑎𝑎𝑑𝑑3𝜈𝜈 + 288𝜋𝜋�𝑎𝑎5𝑑𝑑3𝜈𝜈 −
48𝜋𝜋�𝑎𝑎9𝑑𝑑3𝜈𝜈 + 2𝜋𝜋�𝑎𝑎13𝑑𝑑3𝜈𝜈 + 8𝑖𝑖 log�𝑎𝑎 + 𝑖𝑖�𝑑𝑑2� �128�𝑎𝑎𝑑𝑑1 − 80�𝑎𝑎5𝑑𝑑1 + 16�𝑎𝑎9𝑑𝑑1 −

�𝑎𝑎13𝑑𝑑1� + 10𝑖𝑖 log(2 − 𝑎𝑎) �2𝜈𝜈 �−128�𝑎𝑎𝑑𝑑2 + 104�𝑎𝑎5𝑑𝑑2 − 22�𝑎𝑎9𝑑𝑑2 + �𝑎𝑎13𝑑𝑑2� −

192�𝑎𝑎5𝑑𝑑2 + 27�𝑎𝑎9𝑑𝑑2 − �𝑎𝑎13𝑑𝑑2� + 2𝑖𝑖 log(−(𝑎𝑎 − 2)5) �𝜈𝜈 �256�𝑎𝑎𝑑𝑑2 − 208�𝑎𝑎5𝑑𝑑2 +

44�𝑎𝑎9𝑑𝑑2 − 2�𝑎𝑎13𝑑𝑑2� − 256�𝑎𝑎𝑑𝑑2 + 192�𝑎𝑎5𝑑𝑑2 − 27�𝑎𝑎9𝑑𝑑2 + �𝑎𝑎13𝑑𝑑2� +

2𝑖𝑖 �1280�𝑎𝑎𝑑𝑑2 log �−(𝑎𝑎 − 2)�𝑎𝑎 + 𝑖𝑖�𝑑𝑑1�� + log�𝑎𝑎 + 𝑖𝑖�𝑑𝑑1� �−2𝜈𝜈 �768�𝑎𝑎𝑑𝑑2 − 688�𝑎𝑎5𝑑𝑑2 +

152�𝑎𝑎9𝑑𝑑2 − 7�𝑎𝑎13𝑑𝑑2� − 1072�𝑎𝑎5𝑑𝑑2 + 206�𝑎𝑎9𝑑𝑑2 − 9�𝑎𝑎13𝑑𝑑2�� − 1024𝑖𝑖 log(4)�𝑎𝑎𝑑𝑑1 +

1024𝜋𝜋�𝑎𝑎𝑑𝑑1 + 640𝑖𝑖 log(4)�𝑎𝑎5𝑑𝑑1 − 640𝜋𝜋�𝑎𝑎5𝑑𝑑1 − 128𝑖𝑖 log(4)�𝑎𝑎9𝑑𝑑1 + 128𝜋𝜋�𝑎𝑎9𝑑𝑑1 +
8𝑖𝑖 log(4)�𝑎𝑎13𝑑𝑑1 − 8𝜋𝜋�𝑎𝑎13𝑑𝑑1 − 2560𝑖𝑖 log(2)�𝑎𝑎𝑑𝑑2 + 1024𝜋𝜋�𝑎𝑎𝑑𝑑2 + 2144𝑖𝑖 log(2)�𝑎𝑎5𝑑𝑑2 −
768𝜋𝜋�𝑎𝑎5𝑑𝑑2 − 412𝑖𝑖 log(2)�𝑎𝑎9𝑑𝑑2 + 108𝜋𝜋�𝑎𝑎9𝑑𝑑2 + 18𝑖𝑖 log(2)�𝑎𝑎13𝑑𝑑2 − 4𝜋𝜋�𝑎𝑎13𝑑𝑑2 +
256𝜋𝜋�𝑎𝑎𝑑𝑑3 − 704�𝑎𝑎3𝑑𝑑3 − 144𝜋𝜋�𝑎𝑎5𝑑𝑑3 + 184�𝑎𝑎7𝑑𝑑3 + 24𝜋𝜋�𝑎𝑎9𝑑𝑑3 − 11�𝑎𝑎11𝑑𝑑3 −
𝜋𝜋�𝑎𝑎13𝑑𝑑3�           (B.5) 
where 𝑖𝑖 = √−1  and  
 

 𝑑𝑑1 = 4 − 𝑎𝑎2,          𝑑𝑑2 = 16 − 𝑎𝑎2,        𝑑𝑑3 = 𝑎𝑎4 − 20𝑎𝑎2 + 64                      (B. 6) 
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